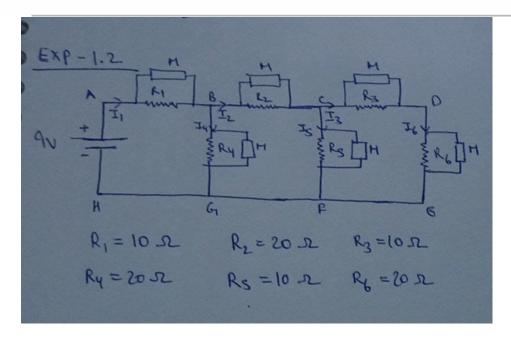


EXPERIMENT TITLE 1.2

Stude	ent Name:	UID:	
Branc	ch: CSE		Section/Group:
Seme	ster: 2		
Subje	ct Name: BASIC ELECTRICAL AN	ID ELECTRONICS ENGIN	EERING
<u>Aim:</u>			
To veri	fy Kirchhoff's Voltage Law (KVL) and stud	ly its limitations.	
<u>Appar</u>	atus:		
S.NO.	EQUIPMENT NAME	SPECIFICATIONS & RATING	QUANTITY
1	Regular variable DC Supply	0-30 V , 0-2 A	1
2	Digital Multimeter	0-30 V	6
2	Pocietors	Of Different Values	6

As Per Requirement

+Circuit Diagram:


Connecting Wires

4

Steps for experiment:

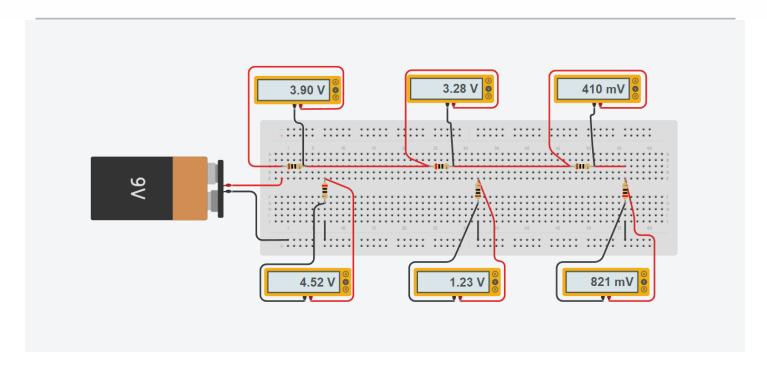
- 1. The circuit is connected as shown in Circuit Diagram above.
- 2. The voltage of the DC supply was set at 9 V.
- 3. Different values of R1 to R6 were taken and readings of I1 to I6 were noted down.
- 4. Accordingly, only one set of readings was taken at 9 V DC supply.
- 5. The observations were recorded in Table.

Calculations/Theorems /Formulas used etc

Applying KVL in loop ABGH, V = I1.R1 + I4.R4 or V = V1 + V4

Applying KVL in loop BCFG, V4= I2.R2 + I5.R5 or V4= V2+ V5

Applying KVL in loop CDEF, V5= I3.R3 + I.6.R6 or V5 = V3 + V6


Observations/Discussions:

CIRCUIT SIMULATION

S.NO.	SUPPLY VOLTAGE	VOLTMETER 1	VOLTMETER 2	VOLTMETER	VOLTMETER	VOLTMETER	VOLTMETER
	(V)	(V1)	(V2)	3 (V3)	4 (V4)	5 (V5)	6 (V6)
1	9 V	3.90 V	3.28 V	410 mV	4.52 V	1.23 V	821 mV

Result/Output/Writing Summary:

As per Kirchhoff's Voltage Law, the theoretical and calculated values of algebraic sum of emfs and voltage drops.

S.NO.	CALCULATED VALUE OF VOLTAGE (V)		THEORITICAL VALUE OF VOLTAGE			PERCENTAGE ERROR			
				(V)					
	V = V1 +	V4= V2+ V5	V5 = V3 +	V = V1 +	V4= V2+	V5 = V3 +	V = V1 +	V4= V2+	V5 = V3 +
	V4		V6	V4	V5	V6	V4	V5	V6
1.	3.90 +	3.28 + 1.23	0.41 + 0.82	9 V	4.52 V	1.23 V	0.64 %	0.22 %	NO
	4.52 =	= 4.51 V	= 1.23 V						ERROR
	8.42 V								

Graphs (If Any): Image /Soft copy of graph paper to be attached here

NO GRAPH

Sources Of Error:

- 1. Internal resistance of DC battery.
- 2. Internal resistance of multimeter viz. voltmeter and ammeter.
- 3. Internal resistance of connecting wires.
- 4. Heating effect of rheostat coil (Joule's law of electric heating)
- 5. All the sources of error related to multimeter.

Learning outcomes (What I have learnt):

- 1. Application of KVL.
- 2. Not applicable to circuits having distributed elements.

Evaluation Grid:

Sr. No.	Parameters	Marks Obtained	Maximum Marks
1.	Worksheet completion including writing learning objectives/Outcomes.(To be submitted at the end of the day).		10
2.	Post Lab Quiz Result.		5
3.	Student Engagement in Simulation/Demonstration/Performance and Controls/Pre-Lab Questions.		5
	Signature of Faculty (with Date):	Total Marks Obtained:	

